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Abstract

A novel method is described for verification of fluid-dynamics solvers based on correlations with solutions from linear
stability analysis. A difficulty with the linear stability analysis solutions for spatially developing flows is that flow fields
typically exhibit exponentially growing features compromising the performance of classical error metrics. This motivates
the construction of a projection-based metric that only assumes the shape of the solution and not the growth rate of the
perturbations, thus also allowing the latter to be determined. The proposed correlation metric complements classical error
metrics, such as p-norms, and can also be used for time-dependent problems with realistic boundary conditions. We dem-
onstrate how the present method can be applied in the verification of an Euler solver for the instability behavior of laminar
compressible free and confined shear layers.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Verification techniques in computational fluid dynamics can rely on grid convergence, order of accuracy,
Richardson extrapolation, and comparison to benchmark solutions. Numerical results can also be compared
against known analytical solutions or against fictitious manufactured solutions [13,28]. A number of reviews
have compiled these and other techniques to assess program code accuracy [13,19,26,27]. The challenge of ver-
ifying a code with tens or hundreds of thousands of lines in which multi-physics models are involved is con-
siderable [9]. Moreover, although it is theoretically possible to perform many such studies, they are rarely
performed without altering some, perhaps substantial, parts of the code. The additional code then renders
the original code verification subject to uncertainty. Considerable effort is typically required to implement a
thorough verification, despite which one can never be completely certain that all programming or other errors
have been uncovered and corrected.
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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In the work presented here, of concern is how the metric is constructed, since results generally depend on
the error norm used to obtain the metric. In classical numerical-analysis terms, an error infinity-, 1-, or 2-norm
is used to measure the rate of convergence of the numerical solution and to compare it with the expected value
according to the discretization method. While these norms are equivalent for a fixed number of variables and
size of the discretization space, they may report different rates of convergence, in practice. This does not inval-
idate the equivalence of the norms since the size of the discretization space is not fixed when resolution is
increased to establish the rate of convergence of the solution. This difficulty also affects the method of man-
ufactured solutions, unless the underlying mathematical problem is rather simple. Moreover, the characteris-
tics of the base or reference solution, against which one compares the computational result, can induce
misleading measurements. For example, consider a feature of the analytical or exact solution that is orders
of magnitude larger than typical values in most of the domain. The numerical error reported by standard met-
rics tends to be primarily controlled by errors occurring around the dominant feature. Even when locally
scaled metrics are used, there is always a trade-off between how local the scaling can be made and how mean-
ingful the metric results are. If the solution is smooth or monotone, an appropriately scaled error metric may
be sufficient. Unfortunately, this is rarely the case with spatially developing unsteady flows. One could assume
that such ‘‘spiky” fields are rather uncommon. However, most unstable flows behave in this manner, exhib-
iting an exponentially growing solution in space or time that is, initially, of small amplitude.

As a complement to traditional error metrics one can exploit statistical tools. That is, instead of attempting
to obtain a hard measurement of the numerical error, one can attempt to determine how close the numerical
solution is to the expected prediction. We note that the value of this metric can be lower than that provided by
convergence and accuracy tests since a solution that appears to be approaching an exact solution may ulti-
mately not even be a mathematically consistent one. The closeness of the solutions can be measured in a num-
ber of ways, through projection techniques [24] to two-point correlations [7,16]. For the purpose of
verification, correlations can be used in a manner akin to that of identification techniques in image processing
where geometrical shapes are identified by correlating an image against all possible sizes, orientations and
positions of the corresponding primitive [22].

In this paper, we investigate and assess the use of correlations for verification of fluid-dynamics solvers
using linear stability analytical results. The methodology will be illustrated using a compressible shear layer
as an example. Previous comparisons of numerical codes with results from linear stability analysis (LSA)
can be found in [3,12,25]. In these studies, growth is temporal and only in [3] is a comparison with a
Navier–Stokes solver that includes the non-linear terms made. In the present study, the growth of the pertur-
bations is spatial and the comparison is with a fully non-linear Euler solver.

2. Verification statement and metric

For unsteady, spatially evolving fields, common error metrics can perform poorly in cases where some fea-
ture is growing very rapidly in one, or more, spatial dimensions. In the case of a laminar, spatially developing
shear layer, when forcing with an unstable mode is applied at the inflow, perturbations convect downstream
and grow exponentially. This exponential growth of the perturbations produces a spatial field with exponen-
tially large and small features. Linear stability analysis can predict the most-amplified mode and provide a
solution to the linearized equations. The goal here is to use this result as part of the verification process of
an unsteady fluid-dynamics solver. Because of the spatial character of the flow, the proposed verification is
not only of the solver itself, but, in large measure, also a verification of the boundary closure numerical imple-
mentation. Time-dependent perturbations are introduced at the inflow and must exit at the outflow in such a
way that any spurious reflections at the downstream boundary do not contaminate the flow excessively.

Direct comparison of the numerically computed solution at a given time with the LSA result presents many
challenges. Even if the initial perturbation is sufficiently small and the linear approximation holds in the entire
computational domain, comparison using classical error norms between two fields that grow exponentially is
difficult. Consider, for example, a field that grows exponentially with the x coordinate. A small relative error at
large x will be responsible for a much larger contribution to an error metric than an incorrect feature at small
x. Moreover, as perturbations grow, non-linearities increase and an accumulation of the global error in such
regions may be unavoidable. If the field under consideration is relatively simple, locally scaled error measures
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can be constructed. In reality, fluid-dynamic solutions are more complex and construction of such locally
scaled error metrics can be difficult and problem-specific.

The key objective of this work is to explore a methodology that does not require extensive knowledge of the
mathematical form of the exact non-linear solution, but instead, uses a simplified (LSA) solution that pro-
duces meaningful and useful estimates.

LSA yields exact solutions to the linearized equations, subject to certain approximations. Among the most
restrictive is that, typically, the basic flow field is assumed to be parallel. By comparing the two solutions using
a correlation metric, one would like to confirm that perturbations injected into the flow are computed to grow
at the expected rate. This can differ from a comparison in terms of a norm of the error between the LSA field
and the computed one owing to the aforementioned dependence on the assumed basic flow.

2.1. Linear stability solution

The stability of laminar shear flows has been considered in many studies. Michalke [18] studied the stability
of the temporally growing shear layer with a hyperbolic tangent profile, Lessen et al. [14,15] considered com-
pressible temporal shear layers under the assumption that the flow is iso-energetic (the total enthalpy is con-
stant), while Blumen and Drazin et al. [1,2,6] assumed that the thermodynamic state of the flow is constant.
Discussion of a secondary instability in three-dimensional shear layers appearing as streamwise counter-rotat-
ing vortices can be found in [17]. In this work, the LSA solution for inviscid compressible free and confined
spatial shear layers by Zhuang et al. [31,32] is utilized. Their method for deriving the stability characteristics
for compressible spatial shear layers is summarized here. The reader is referred to [31,32] for details.

Consider a two-dimensional flow of two parallel steams. All quantities can be written as a basic profile QðyÞ
plus a perturbation
Qðx; y; tÞ ¼ QðyÞ þ Q0ðx; y; tÞ: ð1Þ
Disturbance quantities denoted by primes can be written as an eigenmode expansion,
Q0 ¼ f ðyÞ exp½iðax� xtÞ�: ð2Þ
For spatially growing fluctuations, like the ones considered here, x is a real frequency and a ¼ ar þ iai a com-
plex wave number. The corresponding complex wave velocity can then be written as c ¼ x=a.

Substituting the expressions for the disturbance quantities into the compressible Euler equations and
neglecting quadratic and higher-order terms yields a system of ordinary differential equations for the ampli-
tude functions. These equations can be reduced to a single equation for the pressure disturbances.

For a given disturbance frequency, x, and a basic flow, the solution of the boundary-value problem for the
pressure eigenfunction gives the complex eigenvalue, a. The eigenfunctions for the velocity and density can
then be expressed as functions of the pressure eigenfunction and its derivatives and the complete two-dimen-
sional field can then be constructed.

A shooting Runge–Kutta–Fehberg method is used to solve the eigenvalue problem by matching the asymp-
totic boundary conditions away from the shear layer. Even though analytical solutions are generally preferred
for verification, numerical solution methods of ordinary differential equations are well developed and solution
techniques are reliable. The numerical solutions of the eigenfunctions are obtained independently of the code
being verified, with a typical error of Oð10�6Þ.

2.2. Metric

We define the correlation r, between the computed perturbation field u0comp and the corresponding field from
the LSA, u0LSA, by
r ¼
hu0compu0LSAi

hu02compi
1=2hu02LSAi

1=2
; ð3Þ
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where
h�i ¼
Z

V
�dx: ð4Þ
The LSA perturbation field is
f ðyÞe�aixþiarðx�x0Þ; ð5Þ

where the eigenfunction f is a function of the vertical coordinate y and also depends implicitly on the mode a,
with x0 a phase shift that will be treated as an independent variable. If a numerical code is correct and the flow
is perturbed with the most amplified mode, the correlation r will have a maximum at the value of the most
amplified mode.

This correlation may be computed in two different ways. One may assume that near the most amplified
mode the shape of the eigenfunction f does not change significantly and neglect the dependence on a. In this
case, r is computed for all values of the three-dimensional parameter space ar; ai, and x0, i.e.,
r1ðar; ai; x0Þ ¼
hu0f ðyÞe�aixþiarðx�x0Þi

hu02i1=2h f ðyÞe�aixþiarðx�x0Þð Þ2i1=2
: ð6Þ
An alternative is to keep the dependence of the eigenfunction f on the mode a and compute r for values of a
along the dispersion relation. In this case, the value of x0 can be left as a free parameter that can be varied, i.e.,
r2ðaðxÞ; x0Þ ¼
hu0f ða; yÞe�aixþiarðx�x0Þi

hu02i1=2h f ða; yÞe�aixþiarðx�x0Þð Þ2i1=2
: ð7Þ
3. Numerical method

The flow solver assessed here exists at the bottom of an adaptive mesh refinement (AMR) controller called
AMROC [4,5] that provides a generic infrastructure for hyperbolic problems and handles mesh adaptation,
message passing in parallel architectures, and most of the IO functionality in a quasi-transparent manner.
In this study, the AMR capability was not employed and only the two-dimensional version of the solver
was used. Thus, a regular Cartesian mesh is used for discretization of the flow fields. The compressible Euler
equations were solved with a second-order accurate collocated center-difference scheme discussed in [10]. The
method is formulated in energy-conserving form [11], with stable boundary closures [29]. Inflow and outflow
boundary conditions are implemented in characteristic form [30,23]. In the present study, the flow field down-
stream of the outflow boundary can be determined from the LSA, thus the LSA solution is used to obtain the
amplitude variation of the incoming wave at the outflow plane. Further details of the complete solver can be
found in [20].

4. Results

4.1. Flow description

The shear layer is assumed to be formed between two parallel streams of the same gas governed by the per-
fect-gas equation of state and subjected to a two-dimensional, spatially growing disturbance. We assume a
hyperbolic-tangent basic velocity profile of the form,
UðyÞ=U 1 ¼ gðyÞ þ URð1� gðyÞÞ; ð8Þ
where UR ¼ U 2=U 1 is the velocity ratio of the two streams, and
gðyÞ ¼ 1

2
ð1þ tanhðyÞÞ: ð9Þ
As in [31,32], the Crocco–Busemann relation is used to obtain the temperature profile.



G. Matheou et al. / Journal of Computational Physics 227 (2008) 5385–5396 5389
The most-amplified mode and the corresponding eigenfunctions are computed from the LSA and used to
force the shear layer at the inflow. For example, the streamwise velocity inflow condition is:
Table
Flow c

Case

Transv
Top st
Conve
Veloci
Densit
Tempe
uð0; y; tÞ ¼ UðyÞ þAðfrðyÞ cosðxtÞ � fiðyÞ sinðxtÞÞ; ð10Þ

where f is the complex streamwise velocity eigenfunction, f ¼ fr þ ifi, and A is the forcing amplitude. For the
present study, the eigenfunctions were normalized such that the maximum of the absolute value of the real
part of the streamwise velocity eigenfunction is unity,
max
y
ðjfrðyÞjÞ ¼ 1: ð11Þ
Two-dimensional numerical simulations of two shear layers were conducted to demonstrate the use of corre-
lations for verification purposes. Shear Layer A is low-Mach-number flow, with a convective Mach number
[21] of M c ¼ 0:09. For shear layers composed of the same gas with matched static free-stream pressures
and temperatures, the convective Mach numbers, M c1 and M c2, are the same from both streams and equal to
M c ¼
ðU 1 � U 2Þ=2

a
; ð12Þ
where a is the common speed of sound of the two free streams. Shear Layer B has a supersonic top stream over
a subsonic stream with M c ¼ 0:8. Shear Layer A is unconfined whereas Shear Layer B is confined. Table 1
summarizes the conditions for the two cases.

The computational domain has a streamwise length of 100 units and a transverse length of 40 units. The
shear layer basic profiles are given by Eq. (8). Both cases are computed at four different resolutions to inves-
tigate convergence and the effect of grid spacing on the growth rate of the perturbation. Correlations and error
metrics are computed up to a streamwise distance of x ¼ 80, excluding thereby the region near the outflow
boundary.

The computations are initialized with the LSA solution at time t ¼ 0 and then the forcing is applied as an
inflow perturbation. The amplitude of the forcing (A in Eq. (10)) is A ¼ 0:5� 10�4U 1 for both test cases.
Fig. 1 shows a comparison between the computed and the LSA streamwise velocity perturbation fields for
Case A.

For the comparison with LSA to be valid, perturbations must be sufficiently small such that the non-linear
terms are much smaller that the linear, or first-order terms throughout the domain. The validity of this
assumption for the Euler equations is assessed by expressing the system of equations in terms of the primi-
tive-variables vector of state
q ¼ ½ q u v T �T ð13Þ
as
MðqÞ ¼Mð�qÞ þ Lðq0Þ þN ðq0Þ; ð14Þ
where the terms linear in q0, are in Lðq0Þ and quadratic and higher-order terms in N ðq0Þ. The linearized equa-
tions are a valid approximation to the original set of equations if,
kLðq0Þk � kN ðq0Þk: ð15Þ
1
onditions for the two shear layers

A B

erse boundary Unconfined Confined
ream Mach number, M1 0.2 2.133
ctive Mach number, M c 0.09 0.8
ty ratio, U 2=U1 0.5 0.25
y ratio, q2=q1 1 1
rature ratio, T 2=T 1 1 1



Fig. 1. Streamwise velocity perturbation fields. The panel on the left depicts the linear stability analysis prediction and the one on the right
the computed field for Case A, Dx ¼ 0:0625 and t ¼ 20. Note the exponential growth of the perturbation.
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For example, for the mass-conservation equation, we must have
Table
L2 nor

Equati

Mass
x-mom
y-mom
Energy

Table
L2 nor

Equati

Mass
x-mom
y-mom
Energy
Z
jLðq0Þj2dx

� �1=2

�
Z
jN ðq0Þj2dx

� �1=2

: ð16Þ
The analytical LSA solution was used to compute the norms of the linear and non-linear contributions. Tables
2 and 3 show the results using the L2 norm. The contribution of the non-linear terms in the momentum equa-
tions is always at least two orders of magnitude less than the linear terms. For both test cases, we will accept
this as the proper metric for the validity of the linear approximation and that the LSA solution can be com-
pared with the computed fields.

4.2. Classical error metrics

Classical error metrics were computed based on the L1 norm. Fig. 2 shows the error norms of the stream-
wise and transverse velocity perturbations at scaled time, t ¼ 20. All times reported are normalized by the
mean convective time, tc ¼ Lx=U c, where Lx is the streamwise length of the computational domain and
U c ¼ ðU 1 þ U 2Þ=2. The behavior of the error norms is substantially different in the two cases. For Shear Layer
B, the error converges at the expected second-order rate. Unlike Case B, the error for Shear Layer A decreases
rapidly at coarse resolution but tends to a constant for the finer grids. Two different kinds of error appear to
dominate at low and high resolution. At large grid spacings, dispersion errors dominate, but as the grid
2
ms of the linear and non-linear terms for the unconfined, (effectively) incompressible Shear Layer A

on Linear Non-linear Ratio

1:41� 10�1 2:67� 10�4 522
entum 4:00� 10þ1 5:50� 10�3 7300
entum 6:98� 10þ1 3:28� 10�3 21,265

5:62� 10�1 6:02� 10�2 9

3
ms of the linear and non-linear terms for confined, compressible Shear Layer B

on Linear Non-linear Ratio

1:40� 10�2 2:60� 10�7 53,838
entum 4:17� 10�1 3:31� 10�5 12,604
entum 1.26 1:85� 10�5 68,184

1.78 8:37� 10�3 212
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Fig. 2. L1 norm of the error versus grid spacing for Shear Layer A (left) and B at t ¼ 20. Solid lines correspond to the error norm of the
streamwise velocity perturbation, u0, and dashed to the transverse, v0. The error for Shear Layer A tends to a constant as grid spacing
decreases due to a mismatch in the growth rate with the linear stability analysis prediction. Perturbations in Case B grow at the expected
rate and the error converges at second-order rate.
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spacing becomes smaller and all wavenumbers become sufficiently resolved, this type of error decreases rap-
idly. The analysis based on the correlation metric that follows shows that the perturbations in Case A grow at
different rate than the one predicted from LSA. Even though the mismatch in the growth rate is quite small it
is sufficient to destroy the convergence of the norms.

The observed different error norm behavior between the two cases cannot be attributed to code error since
the identical code produces perfectly converging results for Case B. Quite likely, boundary condition imple-
mentation limitations leave an imprint on the solution that cannot be removed by mesh refinement alone. This
hypothesis is consistent with the change in the type of characteristic boundary conditions from Case A to B,
i.e., different number of characteristics specified at the boundary: subsonic (A) to supersonic (B). Since the
local boundary treatment is based on one-dimensional projection methods, there is always possibility that
waves transverse to the boundary remain close to it and that may contribute to a local contamination of
the solution.

4.3. Correlation metrics

The r1 correlation was evaluated for both test cases for values of the three-dimensional parameter space
ar; ai, and x0. If the computed solution is identical with that from LSA, r1 has a global maximum in a period
of x0 with a value of unity. In reality, the computed solution will be close to the analytical solution, but will not
be identical. Thus a maximum of the correlation is sought and this yields the values of ar; ai, and x0 at the
maximum. Their values should be close to the exact values used to force the shear layer. Since this is an
unsteady flow, the correlation is computed at various times. Its maximum value and the values ðar; ai; x0Þ at
the maximum will actually vary with time. In this study, the correlation maximum was always found to be
near the value of the most-unstable mode with which the shear layer was forced and the correlation maximum
was very close to unity.

Figs. 3 and 4 show results based on correlation r1 for the streamwise velocity perturbation, u0, and trans-
verse velocity, v0, at various grid spacings and times. The results can be seen to converge as the grid is refined
with the value of the maximum of the correlation approaching unity, an indication that the shape of the per-
turbation field is the one predicted from the LSA.

Even though the correlation maximum is very close to unity for both cases, only in Case B does the growth
rate converge to the value predicted by LSA. Perturbations in Shear Layer A appear to be growing at a slightly
lower rate than expected. The discrepancy in the growth rate is about 1%.

Also shown in Figs. 3 and 4 is the real part of the mode which appears to converge to the correct result.
Tables 4 and 5 show results at a resolution of 1600� 640 ðDx ¼ 0:0625Þ at time t ¼ 20.

As a way of visualizing the relationship between the computed and LSA perturbation fields, scatter plots of
the computed u0 and v0 versus the LSA values are shown in Figs. 5 and 6 for Dx ¼ 0:0625 and t ¼ 20. Each
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Fig. 3. Results for Shear Layer A at different times and resolutions. Correlation r1 (a), the real part of the mode (b) and the imaginary part
of the mode (c). Open symbols correspond to correlation with u0 and filled symbols with v0.
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point ðu0LSA;ij; u
0
comp;ijÞ on the scatter plots represents the value of u0 in the computational cell ðxi; yjÞ; u0comp;ij, and

the LSA value, u0LSA;ij, at the same location and time. A closer look of Fig. 6 reveals that the computed solution
for Case B grows slightly faster than the LSA predicted growth rate in accord with the results of Table 5.

The second type of correlation defined, r2, is an implicit function of the disturbance frequency x, in other
words, this is a correlation along the dispersion relation. The eigenfunctions in this case are different for each
value of a ¼ aðxÞ. Fig. 7 shows the values of the correlation r2 as a function of the frequency for both shear
layers at time t ¼ 20 computed on a 1600� 640 grid. As in the case of the r1 correlation, the maximum occurs
at the most unstable mode and the value of r2 decreases significantly away from the most unstable mode.

4.4. Discussion

To address practical difficulties with classical error metrics in comparing ‘‘spiky” fields that evolve in space
or time, correlation metrics can be used in the verification of fluid-dynamics solvers. Convergence of the error
norm is only possible when the growth rate converges to the one predicted from LSA. If there is a mismatch,
owing to accumulation of dispersion errors introduced naturally in the discretization of the governing equa-
tions and the treatment of boundary conditions, for example, classical error norms may not converge even if
the numerical solver is correct. In one of the test cases considered here, Shear Layer A, the growth rate of the
computed solution differs slightly from the one predicted from LSA and, as a result, the L1 norm does not
converge within the resolution range explored. Using the correlation metric we were able to quantify the dis-
crepancy in the growth rate. Correlation metrics assume only the ‘‘shape” of the solution and not the growth
rate. Our results show that this assumption is valid since the maximum of the correlation was always very close
to unity.

Correlation metrics differ from classical error metrics and cannot be used as the only test in the verification
of a fluid dynamics solver. However, they provide a complement to classical error assessment tools in a
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Table 4
Comparison of the exact and computed real and imaginary parts of the most unstable mode for Shear Layer A for u0 and v0. The grid
resolution is 1600� 640 ðDx ¼ 0:0625Þ
Scaled time, t Real part Imaginary part Correlation

Exact 0.441798 �0.064055 –

Correlation with u0

5 0.441359 �0.063240 0.996917
10 0.439975 �0.063110 0.996149
15 0.440510 �0.063780 0.997158
20 0.441920 �0.064655 0.996986

Correlation with v0

5 0.440709 �0.064812 0.999453
10 0.440722 �0.063648 0.999467
15 0.441230 �0.062678 0.999276
20 0.442520 �0.063581 0.999457

G. Matheou et al. / Journal of Computational Physics 227 (2008) 5385–5396 5393
numerical-simulation verification program. A limitation of the correlation metric, as it is constructed here, is
that the magnitude of the solution is not assessed because of the normalization of the correlation coefficient
(Eq. (3)). Thus, an additional test is required.

While simple flows can be used to verify order-of-accuracy and convergence, the present technique utilizes
results from LSA that provides solutions to the linearized partial differential equations of fluid flow so that a
solver can be tested on a more complex problem with realistic boundary conditions. As is evident from the
example of the spatial shear layer used in this study, boundary conditions are of particular significance. Per-
turbations are introduced at the inflow, convect downstream, and must exit at the outflow boundary without



Table 5
Comparison of the exact and computed real and imaginary parts of the most unstable mode for Shear Layer B for u0 and v0. The grid
resolution is 1600� 640 ðDx ¼ 0:0625Þ
Scaled time, t Real part Imaginary part Correlation

Exact 0.255145 �0.044802 –

Correlation with u0

5 0.255307 �0.045018 0.999941
10 0.255005 �0.044818 0.999922
15 0.254843 �0.045118 0.999908
20 0.255316 �0.045169 0.999922

Correlation with v0

5 0.255064 �0.045047 0.999975
10 0.255055 �0.045001 0.999980
15 0.255081 �0.045030 0.999978
20 0.255044 �0.045026 0.999978

Fig. 5. Scatter plots for u0 (left) and v0 for Shear Layer A, Dx ¼ 0:0625 and t ¼ 20.

Fig. 6. Scatter plots for u0 (left) and v0 for Shear Layer B, Dx ¼ 0:0625 and t ¼ 20.
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excessively contaminating the flow with spurious reflections. Failure to impose the correct inflow condition or
the presence of spurious reflected waves at outflow boundaries will cause a reduction in the correlation and a
deviation of the growth rate from LSA predictions. For this reason, while the methodology described here
verifies the solver, it is particularly valuable in that it also verifies the particular boundary closure.
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LSA values.
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Furthermore, the current method does not require modification of the solver, as does the method of man-
ufactured solutions, where additional/separate treatment for source terms is required, and can be used for the
verification of ‘‘black-box” solvers where the user has no access to the source code.

Even though in the example of the instability of a spatial laminar shear layer presented here, a normal-
mode methodology is used to derive the stability characteristics of the basic flow, the verification methodology
is not restricted to normal linearized operators. If the linearized equations about a basic flow exhibit non-nor-
mal behavior and therefore transient growth [8], a modified technique from that presented here may be
required. The main idea is to compare a solution of the linearized equations to a solution from a non-linear
solver using a projection-based method. In many cases, the linearized problem reduces to the solution of an
ordinary differential equation for which solution methods are well developed and can be readily verified. This
feature of the use of LSA solutions makes them attractive for verification of non-linear multi-dimensional par-
tial differential equations solvers. Care should be taken so that the conditions for the comparison are satisfied.
For example, in the two shear layer cases examined here, the amplitude of the perturbations should be suffi-
ciently small for the assumption of linearity (Eq. (14)) to be satisfied throughout the domain.

The proposed method can be extended to three dimensions and other flows for which LSA can be applied.
Extending the example discussed here, one could consider oblique wave disturbances, for example, of the
form,
Q0ðx; y; z; tÞ ¼ f ðyÞ exp½iðaxþ bz� xtÞ�: ð17Þ

In this case, the parameter space of the correlation would be expanded to include the values of the spanwise
component.

5. Conclusions

A method utilizing results from linear stability analysis (LSA) theory is used for computer source code ver-
ification of fluid-dynamics solvers including boundary conditions. We show through an example of compress-
ible shear layers that the exponentially growing nature of the LSA solutions results in poor measurement of
the convergence rate if classical error metrics are used, such as the p-norms of the error. An alternative
approach based on the use of correlations is presented here by which the solution obtained from a numerical
solver is correlated with the LSA solution. The comparison in terms of a correlation helps assess whether the
perturbations evolve correctly and grow at the expected rate. Numerical solutions for an unbounded (effec-
tively) incompressible shear layer and a confined compressible shear layer are computed using a compressible
flow solver to demonstrate how the present method can be applied to the verification of the numerical solution
of Euler flows.
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